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J. Phys. A: Math. Gen. 17 (1984) 3415-3423. Printed in Great Britain 

Hilbert transforms using fast Fourier transforms 

R J Henery 
Department of Mathematics, University of Strathclyde, Glasgow GI IXH, U K  

Received 13 July 1984 

Abstract. Fourier transforms are unreliable near discontinuities because of the Gibbs 
phenomenon. Before using the fast Fourier transform technique to evaluate Hilbert 
transforms, it is desirable to remove any discontinuities by smoothing, as suggested by 
Papoulis (1962). This is especially true if we wish to use Fourier transforms to find the 
Hilbert transform h ( t )  of a function f ( t )  which has an infinite discontinuity: it is then 
necessary to smoothf( r )  as well as the Hilbert transform kernel. An alternative to smoothing 
f( t )  is to remove a discontinuity at a point t = d by multiplying f( t )  by the factor ( t  - d ) :  
this has the advantage of having better asymptotic behaviour. A numerical example is 
given and here the two methods perform about equally. 

1. Introduction 

Hilbert transforms occur frequently in mathematical physics-dispersion relations such 
as the Kramers-Kronig equations of dielectric theory and the solution of Laplace’s 
equation in a half-plane are two examples. Yet there are few techniques for their 
numerical evaluation. One technique, which has been suggested several times since 
about 1970, is to use the fast Fourier transform (FFT). However, early papers on the 
application of FFT methods to numerical Hilbert transforms paid insufficient attention 
to the problems of wrap-around and discontinuities in the time and frequency domains, 
and it is the purpose of this paper to discuss some ways for resolving these problems 
in a few simple cases. 

In § 2 we describe the basic FFT method for evaluating convolutions and set the 
notation for Hilbert and Fourier transforms which are used later. 

In using FFTS to find an approximation to the Hilbert transform h ( t )  of a given 
function f( t ) ,  the overall procedure consists of nine main steps: (i) trucating f( t )  if 
necessary; (ii) smoothing f( t )  to avoid singularities; (iii) discretising the smoothed 
f( t ) ;  (iv) discrete Fourier transform of the sampled and smoothedf(t); (v)  truncation 
of the Hilbert kernel in the time domain; (vi) smoothing the kernel; (vii) discrete 
Fourier transform of the truncated kernel; (viii) multiplication of the Fourier trans- 
forms; (ix) inverse discrete Fourier transform. 

The order in which these operations are applied is important, as indeed is the 
precise manner of their implementation, but some variation, with slight difference in 
interpretation, is possible. The equivalence of these variations follows from the fact 
that convolutions commute and from the Fourier transform property of convolutions. 
For example, it is possible to replace step (vi) with a multiplication by a window 
function at step (viii), or, equivalently, stage (vi) could be omitted if, after stage (iii), 
the sampled function is suitably interpolated. Since there are many possible permuta- 
tions in these steps, they are not discussed in detail. It is only necessary to stress that, 
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iff( t )  is smoothed as described in 9 3, for example, this should be done before sampling 
and we discuss this point in 9 4. 

Smoothing of the Hilbert kernel is also necessary, even when the function f(t) is 
well behaved, and our version of this is set out in 9 5. 

Since the main difficulty in applying the Fourier transform method occurs when 
the functions involved have discontinuities, giving very slow convergence, we will give 
an alternative suggestion for dealing with discontinuities of a particular type in 0 6 .  

2. Hilbert transform 

The Hilbert transform h( t )  of the functionf( t )  is the principal value of the convolution 
o f f (  I )  with the kernel function k(  t )  = - 1/ r t :  

m X 

h ( t ) =  f ( ~ )  k ( t - s ) d s = ( l / r )  f ( s ) ( t - ~ ) - ' d ~ .  (2.1) i-, I_- 
Using * to denote convolution we may write this as 

h ( t )  =f(t) * k ( t ) .  

Fourier transforms will be denoted by the corresponding capital letter so that, for 
example, 

m 

5, F(o) = f ( x )  .exp(iwx) dx. 

The Hilbert transform relation (2.1) becomes, on Fourier transformation, 

H ( w )  = F ( w ) K ( w )  = -i sgn(w) F ( w ) .  (2.3) 

Whereas the direct calculation of the Hilbert transform proceeds from (2.1) regarded 
as an integral to be evaluated at a fixed argument I, for example Taurian (1980) uses 
cubic splines in this way, the Fourier transform technique proceeds by finding H ( w )  
for all o and then taking the inverse Fourier transform. 

The simplest FFT procedure is to discretise and truncate f( t )  so that (2.2) becomes 
a discrete Fourier transform. Then (2.3) is used to get H ( o )  and an inverse discrete 
Fourier transform gives h (  t )  at the sampling points. This was the procedure used by 
Peterson and Knight (1970), Henery (1970), Saxton (1974), and others, but it is much 
affected by wrap-around effects. To avoid wrap-around, the functions f( I )  and k ( t )  
must be truncated and (2.1) evaluated as a convolution using the methods of Cooley 
et a1 (1967) or Nussbaumer (1981). Even then there are problems with the singularity 
of the kernel k( 1 )  at the origin necessitating a smoothing operation. 

Discontinuities may also occur in f(t). We take an example from Kikuchi and 
Fukao (1976) concerning dislocation models of stress in earthquakes. The stress field 
h ( t )  is the Hilbert transform of the derivative g ' ( t )  of the dislocation displacement 
g(  t ) ,  and in the models considered by Kikuchi and Fukao (1976) the derivative g'( t )  
may be infinite at the ends of the dislocation. However, we may write (2.1) as 

m m 

h( I )  = g ' ( S )  k (  t - S )  dS = k(  t - S)  dg(S) (2.4) I_, I_, 
and the last form of the integral is preferable in this case, as we now show. 
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3. Smoothing f(t) 

In numerical work there must be an upper bound on the frequencies included in the 
Fourier transform, so that the Gibbs phenomenon will give rise to difficulties near any 
discontinuity. To deal with discontinuities, Papoulis ( 1962) uses the following pro- 
cedure based on the running average f( ?): 

t + A / 2  

f(t) = ( l / A )  1 f(s) ds = ( l / A ) [ g ( t  + U )  - g ( t  -A/2)1.  
t - A / 2  

Although other choices of average are possible, this choice of average is appropriate 
for (2 .4)  as it leads to a simple form of product integration. The function f ( t )  is 
continuous and equals the convolution of f( t )  with the rectangular function 
( l / A ) r ( 2 ? / A ) ,  where r ( t )  = 1 if ( t i <  1, and r ( t )  = O  if I t / >  1 .  If the Fourier transform 
F ( w )  is now truncated above w = R, the transform F , ( w )  results: 

Fa(w)  = F ( w ) r ( w / R )  

= F ( w )  sinc(wA/2)r(w/R),  

and the inverse function will give a satisfactory approximation to f ( t )  without overshoot. 
For numerical work using digital computers it is also necessary to sample the 

function f ( t )  at the points t = mA,  m = 0, - 1 ,  + 2 , .  . . . The most appropriate choice 
of s2 is therefore s2= ../A, by virtue of the sampling theorem. 

Since convolutions commute, the Hilbert transform K ( t )  of f ( t )  is a smoothed 
version of h (  t ) :  

E ( ? )  = k(  t )  * f ( t )  = k(  t )  * ( l / A ) r ( 2 f / A )  * f( t )  

= ( l / A ) r ( 2 t / A )  * h ( t ) .  

This allows us to assess the effect of smoothing on h ( t ) .  For example, if h ( t )  has a 
continuous third derivative in the interval ( t  - A/2,  t + A/2) ,  the difference between 
h ( t )  and 6(t)  is h”( t )A2 /24+O(A3)  as is easily shown by integrating the Taylor series 
expansion for h (  t )  over that interval. More generally, if an even smoothing operator, 
localised to a range A, is applied to f ( t ) ,  then the error in h (  t )  will be of order h”( ?)AZ, 
when h ( t )  has a continuous third derivative over the range A. 

However, the main point is to apply the smoothing operator before sampling f( t )  
since these operations do not commute unless f( t )  is band-limited. 

4. Sampling f( t )  

We can describe the effect of sampling most easily using a train of impulses 
s( t )  = A Z:=-, S (  t - nA) ,  where S (  1 )  is the Dirac delta function. The sampled function 
h( t )  may be written formally as a succession of impulses: 

m 

f S ( f ) = A  c f ( t ) s ( t - n A ) = f ( t ) s ( t ) ,  
n=-m 

and its transform, which has period 2 r / A  in U ,  is 
m 

F , ( o )  = F ( w  -21rnlA) .  
n=-m 

(4.1 ) 
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Because of aliasing, every frequency w is confounded with an infinite number of 
higher frequencies and this causes severe problems if F(o) has a long tail. However, 
if F ( w )  is negligible for w > r / A ,  as will be the case if f ( t )  is a smooth function, 
F , ( w )  will represent accurately the low frequency spectrum of f (  t ) .  This implies that 
f(t) should be smoothed before being sampled, and with this understanding we can 
write x( t )  for the result of sampling f( t ) :  

The spectrum F s ( o )  is related to F ( w )  by 
cc 

l? (w)  = c F ( w  -2rnlA) sinc [ iA(w -2rnlA)l.  (4.3) 
n=--cD 

The reduction in aliasing of (4.3) compared to (4.1) is most marked for small w, 
say for O < w < c  r / A ,  in which case the coefficient of F ( w )  in (4.3) is approximately 
1 - w2A2/24, whereas the coefficient of F ( w  -2nr/A),  n # 0, is of order wA/2nr. To 
this approximation F, (w)  is equal to 

F (w) ( l  -w2A2/24)+(wA/2r) ( l / n ) F ( w  -2nrlA).  (4.4) 
n#O 

To the same approximation, sampling f ( t )  and then smoothing would give, in place 
of (4.4), the expression (4.5): 

(4.5) 

Comparison of (4.4) and (4.5) shows that aliasing is less in (4.4) by a factor of 
order wA/2x when w A  is small. The bias term -w2A2F(w)/24 is common to both 
and may be identified with h”(t)A2/24 by noting that f’(t) has Fourier transform 
- w 2 F ( w )  and that h ” ( t )  is the Hilbert transform off’(?). 

Of course the difference between (4.4) and (4.5) is of importance only if F ( w )  has 
a long tail, as will be the case when f ( t )  has discontinuities, and in this case it is 
preferable to smooth before sampling. On the other hand, if F ( w )  is band-limited, 
F ( w )  = 0 for IwI > r / A ,  smoothing is not desirable as the sampled L ( t )  contains all 
the information present in f( t ) .  The use of smoothing would then introduce bias with 
no compensating improvement in aliasing. 

5. Smoothed k ( t )  

The infinite convolution in the Hilbert transform (2.1) must be truncated in practice, 
so we must assume that f( t )  is negligible outside some interval ( - d ,  d ) .  It is then easy 
to see that the evaluation of h ( t )  involves values of the kernel k ( s )  in the interval 
(1 - d, t + d ) .  If we are interested only in the values of h( t )  in some interval ( - t o ,  to),  
the kernel k ( s )  need only be defined in the interval ( - to , -d ,  + t o + d ) ,  so we may 
truncate the kernel k ( s )  above T =  to+d. The effective kernel is now k T ( s ) =  
k ( s ) r ( s /  T ) ,  and the convolution to be evaluated is now 

CO 

W s )  = j - -cDf(u)k , ( .  - U )  du (5.1) 

and by construction this is equal to h ( s )  in the interval ( d  - T, T -  d ) .  Note also that 
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h T ( s )  = 0 for Is1 > T, so that wrap-around, which is inherent in FFT methods, is thus 
avoided. 

The Fourier transform of the truncated kernel is 

K T ( o )  = -(2i/7r) Si(wT), (5.2) 

and so the Fourier transform of h T ( s )  will be calculated from (5.3) rather than (2.3): 

HT ( ) = F (  OJ 1 KT ( w 1. (5.3) 

Clearly if F ( w )  is continuous we recover (2.3) in the limit T+w.  
The numerical procedure will use the sampled function J; (  t )  rather than f( t )  in 

(5.1), with a consequent change in (5.3). However, to anticipate matters a little, we 
may note that (5.3), and therefore (5.2), need only be evaluated for wT = m r ,  m integer, 
and a convenient formula for Si(x) is given in Abramowitz and Stegun (1967). 

We consider now the Hilbert transform of fs( t ) ,  which is a sequence of impulses. 
Even i f f  ( t )  is band-limited some kind of smoothing, or some kind of integration rule, 
will still be necessary as the Hilbert transform of a succession of impulses contains 
discontinuities centred on the sampling points. To keep the argument general, suppose 
that an interpolation operation, in the form of a convolution with a weight function 
w( t ) ,  is applied to fs( t )  and the result, denoted by fw , (  t )  is then Hilbert transformed. 
Since convolutions commute, the Hilbert transform h w , ( t )  = k ( t )  * w ( t )  * f s ( t )  can be 
regarded as a transform with effective kernel IC,,,( t )  = k( t )  * w( t ) .  For example, this is 
the approach of Liu and Kosloff (1981), who use for w ( t )  the triangular function 
(l/A)v(t/A). where u ( t ) =  l-ltl, It (S 1, v ( t ) = O ,  I t / >  1. 

The effective kernel k( t )  may then be truncated above T = NA/2 and sampled at 
t = mA, m = 0, * 1, *2, . . . , *( N / 2  - l) ,  so that the output Hilbert transform is a discrete 
convolution to which the FFT method may be applied. The result is that (5.3) is replaced 
by 

H s w ( w )  = F,(w)Kw,(w)  (5.4) 
where K w T ( o )  is the discrete Fourier transform of the discretised truncated kernel 
k,( t )  = IC,,,( t ) r (  t /  T)s( t ) .  Once K w T ( o )  is found it may be written 

K w A w )  = K T ( W ) W ( W )  

where W ( o )  is a spectral window function which is defined by w(x). A m’ore direct 
attack is to choose W ( w )  as a window function in the first place, thus avoiding the 
calculation of a Fourier transform. For the choice W ( w )  = cos(wA/2) for 1 0 1  s 7r/A 

and W ( w )  = 0 for 1 0 1  > ../A, equation (5.4) becomes 

H S w ( w )  = F , ( ~ ) K T ( W )  c o ~ ( ~ A / 2 ) ,  1 0 1  3 v / A .  ( 5 . 5 )  
If the discrete Fourier transform F, (w)  is given for w = 2n7r/NA, ( 5 . 5 )  will give the 
discrete Fourier transform H s w ( w )  which may be inverted to give the Hilbert transform 
h, , ( t )  for t = nA. The method based on ( 5 . 5 )  will be called the ‘smoothed kernel’ 
method. 

Smoothing both f ( t )  and k ( t )  means using F , ( w )  rather than F, (w)  in ( 5 . 5 )  giving 
the ‘f( t )  and k( t )  smoothed’ method: 

f i s w ( w )  = F , ( o ) K T ( o )  cos(oA/2), IwI n-/A. (5.6) 
Finally, we note that a smoothed kernel of a type similar to (5.2) was considered 

by Saito (1974) and Tretter (1976). Saito (1974) proposed a discrete Hilbert transform 
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based on an effective kernel k , ( t )  = - ( l / r t ) ( l  -cos r t / A )  with Fourier transform 
K,(o) = -i sgn(o)r(wA/.rr). The same discrete filter was suggested by Tretter (1976) 
for the Hilbert transform of a band-limited function. If f s ( t )  is passed through an 
ideal band-pass filter the result is well known to be the Whittaker interpolation of 
fs( t ) ,  and if this interpolated function is then Hilbert transformed, the overall filter has an 
effective kernel k, ( t ). 

6. Discontinuity factor 

It will often be the case that f( t )  cannot be integrated directly, so that Papoulis' (1962) 
smoothing method cannot be used. An alternative which is suitable for sampled 
functions, and which has the added advantage of having better long time behaviour, 
will now be presented. 

We assume now that f( t )  can be written f ( t )  = ( d 2 -  t2)- '9( t ) ,  where + ( t )  is 
continuous for all t. For the numerical example used in 0 7,f( t )  = t (  d 2  - 1 t (  < d ; 
f ( t ) = O ,  I t l>d.  

Let h(  t )  be the Hilbert transform of f( t ) ,  designated symbolically as f( t )  + h( t ) .  
From elementary results in Hilbert transform theory, (see for example Sneddon (1972)), 
the transform of ( t  + d)f( t )  is given via (6.1): 

and repeating the process with a factor ( t  - d )  gives 
m 

( t 2  - d 'If( t )  + ( t 2  - d 2 )  h ( t )  + ( 1 / r) I_,. ( t + Y M Y )  dy. (6.2) 

When the integrals p i = ( l / r ) j z m y f f ( y ) d y  are known or can be evaluated to high 
accuracy, we can use (6.2) to find h( t ) .  If the Hilbert transform of ( t 2  - d 2 ) d (  t ) ,  which 
has no singularities by assumption, is estimated numerically to be h # (  t )  say, then h(  t )  
is given by 

h( t )  = [ h # (  t )  - tpo - p , ] / (  t 2  - d 2 ) .  (6.3) 

One disadvantage in using (6.3) is that even small numerical errors in po , p,  or 
h#(  t )  will lead to large errors in h ( t )  near It1 = d. One advantage, apart from avoiding 
the dicontinuity, is that wrap-around effects are diminished at large t. This can be 
shown easily using the asymptotic expansion given by Taurian (1980): 

(6.4) 

For sufficiently large t this expansion gives a useful estimate of h( t )  provided f( r )  is 
concentrated in a finite interval. In many applications f( t )  is either wen or odd, and 
in these cases the expansion (6.4) loses every second term. Note also that the term 
-(two+ p l ) / (  t 2  - d 2 )  in (6.3) contains the first two terms of the expansion (6.4), implying 
that h#(  t )  tends to zero as ( p Z - p l d 2 ) / t  and is therefore negligible compared to 
tpo+pI (assuming one of po and p1 to be non-zero). For this reason wrap-around 
effects are not quite so serious in the estimation of h # ( t )  as they are for h ( t ) .  
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7. Numerical example 

The five methods to be compared are referred to as: no smoothing; f ( t )  smoothed; 
k(  t )  smoothed; f ( t )  and k(  t )  smoothed; discontinuity factor. These are based, respec- 
tively, on equations: (5.3); (5.4); (5.5); (5.6); and (6.3) with (5.5). 

The specific example used to test these methods comes from Kikuchi and Fukao 
(1976), the same example is used by Liu and Kosloff (1981). 

Example. For the function given by 

f ( t ) =  t ( d 2 -  t 2 ) - ” 2 ,  It1 < d 

= 0, I l l >  d 

h ( t ) =  1, l t l<d 

the Hilbert transform is 

= 1 - I t l ( t 2 - & ) - ” 2 ,  / t J  > d. 

The parameters used throughout were: A = 0.01 ; N = 1024; d = 2.0. With this choice 
of parameter the point t = 2.0, an infinite discontinuity in both f( t )  and h( t ) ,  lies 
exactly on the 200th sampling point, and this is rather awkward for methods 1 and 3. 
In these cases we simply set f(2) =f(2+), but it is clear that a slightly different choice 
of A may give very different results. 

In this example, f ( t )  is already truncated at t = 2.0: k(  t )  is truncated at NA/2 = 5.12, 
so that wrap-around will affect the estimated h ( t )  for t > 3.12. With this in mind, we 
looked at the largest absolute errors in the estimates of h ( t )  within five intervals of t 
(excluding the point of discontinuity t = 2.0). These are shown in table 1 for each of 
the five methods. In every case the largest absolute error overall occurred at the 
sampling points immediately adjacent to the discontinuity, i.e. at t = 2.0 * 0.01. 

Although we cannot draw too many conclusions from just one example, it is clear 
from table 1 that it is possible to use FFT methods for Hilbert transforms, but only if 
discontinuities are suitably dealt with. Smoothing f( t ) ,  if necessary, must be applied 
before sampling; k ( t )  must always be smoothed. Method 5, using the discontinuity 
factor, is a useful alternative to smoothing f ( t ) ,  and has the added advantage of smaller 
wrap-around effects. 

Table 1. The maximum errors for five approximate Hilbert transforms in various ranges. 
For any given interval, the largest error is usually at the end of the interval nearest to the 
discontinuity. The discontinuity t = 2 is not included. Wrap-around effects are responsible 
for the large errors in the interval 3 < t s 4. 

Maximum error for t in interval 

Method O s r < 1  1 ~ r < 1 . 8  r=2*0.01 2 . 1 < r c 3  3 ~ 1 ~ 4  

No smoothing 0.0847 0.33 17 8.613 0.5686 0.1854 
f (  1 )  smoothed 0.0293 0.1173 3.818 0.2370 0.2217 

f ( t )  and k ( t )  smoothed 0.0001 0.0009 2.132 0.0061 0.2096 
Discontinuity factor o.Ooo1 0.00 17 0.957 0.0045 0.0158 

k (  r )  smoothed 0.0616 0.2351 7.890 0.4042 0.1754 
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If we are content to calculate h(  t )  over the interval (-3.12,3.12) we could improve 
the accuracy of table 1, by a factor of 64 approximately, by taking N to be 8 * 1024 
and A=O.O1/8. 

A more successful approach when f ’ ( t )  has a continuous fourth derivative is to use 
cubic splines as in Taurian (1980). The Hilbert transform is then given by an explicit 
formula in terms of the coefficients of the approximating polynomials. This has the 
added advantage that the transform may be evaluated for complex argument. The 
order of convergence is A4 rather than A* as for the smoothing method suggested above 
or for Liu and Kosloff’s (1981) linear interpolation method. 

For the sake of comparison we note that Taurian (1980) also suggested that linear 
interpolation might be used rather than cubic splines, which would be exactly equivalent 
to Liu and Kosloff’s (1981) method but for the choice of points at which to evaluate 
the transform. 

The methods outlined above have been tested on other numerical examples with 
discontinuities. The results bear out the general conclusion that, of the methods 
described, only those methods which explicitly allow for the discontinuity, either by 
appropriate smoothing or by the method of § 6, give acceptable error control away 
from the discontinuity. 

8. Final remarks 

The general rule must be to try to do most of the work analytically, if possible, before 
falling back on purely numerical techniques. This may mean constructing some exactly 
transformable approximating function and using the Fourier transform technique on 
the difference. Thus, if there are points of discontinuity in the transformed function, 
no finite Fourier transform will represent the function adequately in the vicinity of the 
discontinuity (this is the Gibbs phenomenon), and the discontinuity should be removed 
before embarking on the Fourier transform method. We may illustrate the general 
idea with the example of an even function which has a finite jump discontinuity of E 

at t = d. By adding or subtracting the rectangular function E r (  t / d ) ,  where r (  t )  = 1 for 
1 ti < 1 and r (  t )  = 0 elsewhere, we may reduce the numerical work to that of transforming 
a continuous function of t. 

In the same vein it may be possible to use a polynomial approximation for a 
function f(t) continuous over a finite interval. The polynomial might be chosen so 
that its first q moments coincide with those off(  t ) ,  ensuring that its Hilbert transform, 
which of course may be exactly computed, has the right asymptotic behaviour. The 
author has used Bemstein polynomials for this purpose-largely because they are 
defined by the sample values at evenly spaced ordinates-but the convergence to the 
proper transform is so slow that large-order polynomials have to be used and then 
there are problems with floating point accuracy for large t. 
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